Part Number Hot Search : 
CH1622 2SC3746R 322025 AC175 MA1505 AN527 0121ZS BC204
Product Description
Full Text Search
 

To Download CXG1180EQ Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Ultralow Loss GSM Quad-Band Antenna Switch Module
CXG1180EQ/1186EQ
Multiband support to allow the use of the multiple frequencies that are used in different countries is now standard in GSM terminals, which are now the most widely used terminal worldwide. Thus there are especially strong desires for miniature, low-cost, low-loss devices that can switch between multiple circuits with differing frequencies. The newly-developed CXG1180EQ and CXG1186EQ are high-performance lead frame modules that achieve those requirements in a balanced manner. The GSM/UMTS dual mode CXG1190EQ/AEQ products introduced in CX-News Volume 38 are also high-performance lead frame modules.
I Ultralow insertion loss: 0.70 dB in the GSM 850/900 Tx path and 0.85 dB in the DCS/PCS Tx path Dual low-pass filters: Attenuation 30 dB typical (GSM Tx 2fo, DCS/PCS Tx 2fo) Lead frame module that adopts a mold array package Miniature low-height package: LQFN-28P-01 (4.5 mm x 3.2 mm x 1.3 mm max.)
I
I I
Switching Structure that Achieves Low Insertion Loss
Insertion loss is an important index for switch performance. This parameter contributes significantly to both current consumption during transmission and reception sensitivity in portable terminals. Switch modules using the conventional LTCC* substrate adopted a structure in which the frequency band was divided into a low band (900 MHz band) and a high band (1800/1900 MHz band) using a diplexer, and after that, the path switches were connected. (See figure 1.) In these products, Sony adopted the SP6T switch structure to achieve low loss. These devices also provide a low-pass filter in the GSM Tx path. (See figure 2.) In the conventional LTCC module structure, the insertion loss for all the paths becomes the sum of the losses for the diplexer and the
path switching switch. As a result, the overall loss was quite large. In contrast, in the SP6T structure, only the switch insertion loss occurs in the paths other than the GSM Tx path, thus achieving low loss. Low loss can be achieved for the GSM Tx path as well, since the LPF can be implemented with a lower insertion loss than the diplexer. Furthermore, these devices achieve ultralow loss and low distortion by using GaAs switches implemented using Sony's unique JPHEMT process as the switching devices.
*: LTCC: Low temperature co-fired ceramic
achieves both high performance and high integration densities and high integration density filters using LTCC technology. By using existing package technology based on lead frames, it was possible to use current manufacturing and assembly equipment and processes, and thus Sony is able to supply quality products at low cost. Furthermore, since these products consist of two simple components, a GaAs switching IC and a low-pass filter, they have the advantage that the development TAT can be reduced.
Lead Frame Module
In conventional antenna switch modules used in GSM terminals and other products, the switches are implemented by combining, on an LTCC, FR-4, or similar substrate, PIN diodes and other semiconductor switching elements and multiple passive devices inserted on the substrate. However, considering the demands for multimode and multiband operation, miniature low-height form factors, and lower costs in recent cellular phone products, it can easily be seen that it will be difficult to achieve these using these conventional structures. Sony's response to these issues was to use the mold array package, which uses lead frames and is an existing package technology. These new products are implemented by mounting, on the lead frame, both GaAs switches fabricated using Sony's unique JPHEMT process that
Miniature Low-Height Form Factor
The mounting area was reduced by integrating the two low-pass filters for the Tx paths (two circuits) into one component using LTCC technology. Also, etching technology can be used to perform complicated machining on the lead frame, which plays the role of interface between the switch and low-pass filter components mounted on the lead frame. Furthermore, Sony optimized the contact area between the internal low-pass filter lands and the lead frame and also optimized the mold sealing thickness above the low-pass filters, thus achieving a miniature low-height form factor.
V
O
I
C
E
The CXG1180EQ and CXG1186EQ are antenna switches that feature low loss. While the function they provide is simple, this component has a large influence on the performance of radio transceivers. While this could be said to be excessive concern for such a small point, I hope this will contribute to our customers' creation of superb radio products.
Diplexer
LPF
Chip
LPF1 LPF2
SP3T SW
SP3T SW
Rx2
Rx3
Tx1 Rx1 Rx2
Tx2 Rx3 Rx4
Rx1
Rx4
Tx1
Tx2
I Figure 1 Conventional Antenna Switch Module Block Diagram
I Figure 2 CXG1180EQ/CXG1186EQ Block Diagram
I Figure 3 Internal Structures Drawing
Forward Transmission, dB
0 -10
dB (S (4, 3))
Forward Transmission, dB
0 -10
I Table 1 Insertion Loss
Path Tx1 - Ant Condition 1 2 3/4 3/4 3/4 3/4 Insertion Loss (I.L) Min. -- -- -- -- -- -- Typ. 0.70 0.85
Ta = 25C Max. 1.00 1.15 dB Unit
dB (S (2, 1))
-20 -30 -40
m2
m8 m9 m10 m11 m7 m3 m4 m6 m5
-20 -30 -40 -50
m31 m32 m33 m34
Tx2 - Ant Ant - Rx1 Ant - Rx2 Ant - Rx3 Ant - Rx4
0.65/0.85 0.85/1.10 0.65/0.85 0.85/1.10 0.65/0.85 0.85/1.10 0.65/0.85 0.85/1.10
-50 -60 -60 0 1 2 3 4 freq, GHz 5 6 7
m5 freq = 2.740 GHz m5 = -36.083 m9 freq = 4.570 GHz m9 = -20.131
0
1
2
3 4 freq, GHz
5
6
7
1: Frequency = 900 MHz, Input Signal is CW, Pin = +34 dBm 2: Frequency = 1910 MHz, Input Signal is CW, Pin = +32 dBm 3: Frequency = 900 MHz, Input Signal is CW, Pin = -5 dBm 4: Frequency = 1990 MHz, Input Signal is CW, Pin = -5 dBm
m2 freq = 1.650 GHz m2 = -33.568 m6 freq = 3.290 GHz m6 = -30.286 m10 freq = 4.940 GHz m10 = -19.048
m3 freq = 1.830 GHz m3 = -31.901 m7 freq = 3.660 GHz m7 = -23.569 m11 freq = 5.490 GHz m11 = -18.274
m4 freq = 2.470 GHz m4 = -29.959 m8 freq = 4.120 GHz m8 = -19.417
m31 freq = 3.420 GHz m31 = -31.197 m33 freq = 5.130 GHz m33 = -33.152
m32 freq = 3.820 GHz m32 = -32.931 m34 freq = 5.730 GHz m34 = -35.817
I Figure 4 Low Band Low-Pass Filter Attenuation Characteristics
I Figure 5 High Band Low-Pass Filter Attenuation Characteristics
CXG1180EQ
56 pF
33 pF
CXG1186EQ
56 pF
33 pF
GND
Tx1
Tx2
Tx1
GND
N.C
(3) (3) (3) (3)
N.C N.C N.C N.C GND Rx3 Rx4 Rx1 Rx2 GND
N.C N.C N.C N.C GND GND Ant GND GND GND
N.C
N.C
56 pF 56 pF 56 nH (1) 56 nH (1)
N.C N.C N.C N.C GND GND Ant GND GND GND
Tx2
N.C N.C N.C N.C GND Rx1 Rx2 Rx3 Rx4 GND
N.C
(3) (3) (3) (3)
GND VDD CTL-A CTL-B
CTL-C
GND VDD CTL-A CTL-B
100 pF (2)
1: Inductor (56nH) is recommended on Ant port for ESD protection. Capacitors are required on all RF ports for DC blocking. 2: These capacitors are NOT mandatory. 3: Capacitor selection for DC block, For Low band (869-960 MHz): 56 pF For High band (1805-1990 MHz): 33 pF
100 pF (2)
I Figure 6 Application Circuit Examples
CTL-C


▲Up To Search▲   

 
Price & Availability of CXG1180EQ

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X